

Termstar Termiticide and Insecticide PCT Holdings Pty Ltd

Chemwatch: 5465-82 Version No: 2.1.5.1

Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

Issue Date: 17/05/2021 Print Date: 18/05/2021 S.GHS.AUS.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier					
Product name	Termstar Termiticide and Insecticide				
Chemical Name	Not Applicable				
Synonyms	APVMA Code: 59665				
Proper shipping name	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains bifenthrin)				
Chemical formula	Not Applicable				
Other means of identification	Not Available				

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses

Termiticide for use as described on the product label.

Dangerous **POISON**. Available ONLY for industrial and manufacturing purposes. To be used by or in accordance with directions of accredited pest control officers. Operators to be trained in procedures for safe use of material. Use according to manufacturer's directions.

Details of the supplier of the safety data sheet

	•
Registered company name	PCT Holdings Pty Ltd
Address	1/74 Murdoch Circuit Acacia Ridge QLD 4110 Australia
Telephone	1800 630 877
Fax	Not Available
Website	Not Available
Email	Not Available

Emergency telephone number

Association / Organisation	Poison Information centre
Emergency telephone numbers	13 1126
Other emergency telephone numbers	Not Available

SECTION 2 Hazards identification

Classification of the substance or mixture

COMBUSTIBLE LIQUID, regulated for storage purposes only

Poisons Schedule	S6
Classification [1]	Flammable Liquid Category 4, Acute Toxicity (Oral) Category 4, Aspiration Hazard Category 1, Skin Sensitizer Category 1, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Carcinogenicity Category 2, Specific target organ toxicity - repeated exposure Category 2, Chronic Aquatic Hazard Category 1, Reproductive Toxicity Category 1B
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Hazard pictogram(s)

Signal word

Hazard statement(s)

AUH066	Repeated exposure may cause skin dryness and cracking.			
H227	Combustible liquid.			
H302	Harmful if swallowed.			
H304	May be fatal if swallowed and enters airways.			

Chemwatch: 5465-82 Page 2 of 14 Issue Date: 17/05/2021 Version No: 2.1.5.1 Print Date: 18/05/2021

Termstar Termiticide and Insecticide

H317	May cause an allergic skin reaction.	
H336	May cause drowsiness or dizziness.	
H351	Suspected of causing cancer.	
H373	May cause damage to organs through prolonged or repeated exposure.	
H410	Very toxic to aquatic life with long lasting effects.	
H360Df	May damage the unborn child. Suspected of damaging fertility.	

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.				
P210	ep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.				
P260	Do not breathe mist/vapours/spray.				
P271	Use only a well-ventilated area.				
P280	Wear protective gloves/protective clothing/eye protection/face protection/hearing protection.				
P270	Do not eat, drink or smoke when using this product.				
P273	Avoid release to the environment.				
P272	Contaminated work clothing should not be allowed out of the workplace.				

Precautionary statement(s) Response

P301+P310	F SWALLOWED: Immediately call a POISON CENTER/doctor/physician/first aider.					
P308+P313	F exposed or concerned: Get medical advice/ attention.					
P331	Do NOT induce vomiting.					
P370+P378	case of fire: Use alcohol resistant foam or normal protein foam to extinguish.					
P302+P352	IF ON SKIN: Wash with plenty of water.					
P333+P313	skin irritation or rash occurs: Get medical advice/attention.					
P362+P364	Take off contaminated clothing and wash it before reuse.					
P391	Collect spillage.					
P301+P312	IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider if you feel unwell.					
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.					
P330	Rinse mouth.					

Precautionary statement(s) Storage

P405	Store locked up.
P403+P233	Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name	
82657-04-3	11.3	bifenthrin	
Not Available		(100 g/l)	
872-50-4	5.6	N-methyl-2-pyrrolidone	
Not Available		(50 g/l)	
64742-94-5	63.8	solvent naphtha petroleum, heavy aromatic	
Not Available		(562 g/l)	
Not Available	1-10	Ingredients determined not to be hazardous	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4.		

SECTION 4 First aid measures

Description of first aid measures

If this product comes in contact with the eyes:

Immediately hold eyelids apart and flush the eye continuously with running water.

Eye Contact

- Figure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- ▶ Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.

Chemwatch: **5465-82** Page **3** of **14**

Termstar Termiticide and Insecticide

Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. Immediately flush body and clothes with large amounts of water, using safety shower if available. Skin Contact Quickly remove all contaminated clothing, including footwear. Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor. If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Inhalation Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. ► If swallowed do **NOT** induce vomiting If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Ingestion Seek medical advice. Avoid giving milk or oils. Avoid giving alcohol. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours.

For petroleum distillates

- In case of ingestion, gastric lavage with activated charcoal can be used promptly to prevent absorption decontamination (induced emesis or lavage) is controversial and should be considered on the merits of each individual case; of course the usual precautions of an endotracheal tube should be considered prior to lavage, to prevent aspiration.
- Individuals intoxicated by petroleum distillates should be hospitalized immediately, with acute and continuing attention to neurologic and cardiopulmonary function.
- Positive pressure ventilation may be necessary.
- · Acute central nervous system signs and symptoms may result from large ingestions of aspiration-induced hypoxia.
- After the initial episode, individuals should be followed for changes in blood variables and the delayed appearance of pulmonary oedema and chemical pneumonitis. Such patients should be followed for several days or weeks for delayed effects, including bone marrow toxicity, hepatic and renal impairment Individuals with chronic pulmonary disease will be more seriously impaired, and recovery from inhalation exposure may be complicated.
- Gastrointestinal symptoms are usually minor and pathological changes of the liver and kidneys are reported to be uncommon in acute intoxications.
- Chlorinated and non-chlorinated hydrocarbons may sensitize the heart to epinephrine and other circulating catecholamines so that arrhythmias may occur. Careful
 consideration of this potential adverse effect should precede administration of epinephrine or other cardiac stimulants and the selection of bronchodilators.

BP America Product Safety & Toxicology Department

- Mammalian toxicity of pyrethrum and synthetic pyrethroids is low, in part because of poor bioavailability and a large first pass extraction by the liver.
- ▶ The most common adverse reaction results from the potent sensitising effects of pyrethrins.
- Clinical manifestations of exposure include contact dermatitis (erythema, vesiculation, bullae); anaphylactoid reactions (pallor, tachycardia, diaphoresis) and asthma. [Ellenhorn Barceloux]
- In cases of skin contact, it has been reported that topical application of Vitamin E Acetate (alpha-tocopherol acetate) has been found to have high therapeutic value, eliminating almost all skin pain associated with exposure to synthetic pyrethroids. [Incitec]

SECTION 5 Firefighting measures

Extinguishing media

Foam

Version No: 2.1.5.1

- Dry chemical powder.
- ► BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility

Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- ▶ Use water delivered as a fine spray to control fire and cool adjacent area.
- Fire Fighting

 Avoid spraying water onto liquid pools.
 - DO NOT approach containers suspected to be hot.
 - Cool fire exposed containers with water spray from a protected location.
 - If safe to do so, remove containers from path of fire.

▶ Combustible.

- ▶ Slight fire hazard when exposed to heat or flame.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- ► On combustion, may emit toxic fumes of carbon monoxide (CO).
- May emit acrid smoke.

Fire/Explosion Hazard Mists containing combustible materials may be explosive.

Combustion products include: carbon dioxide (CO2)

hydrogen chloride phosgene hydrogen fluoride Issue Date: 17/05/2021

Print Date: 18/05/2021

Chemwatch: 5465-82 Page 4 of 14 Version No: 2.1.5.1

Termstar Termiticide and Insecticide

Issue Date: 17/05/2021 Print Date: 18/05/2021

nitrogen oxides (NOx) other pyrolysis products typical of burning organic material. HAZCHEM

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for conta	amment and cleaning up
Minor Spills	Environmental hazard - contain spillage. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal.
Major Spills	Environmental hazard - contain spillage. Moderate hazard. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite. Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

The conductivity of this material may make it a static accumulator.. A liquid is typically considered nonconductive if its conductivity is below 100 pS/m and is considered semi-conductive if its conductivity is below 10 000 pS/m., Whether a liquid is nonconductive or semi-conductive, the precautions are the same., A number of factors, for example liquid temperature, presence of contaminants, and anti-static additives can greatly influence the conductivity of a liquid.

- ▶ Containers, even those that have been emptied, may contain explosive vapours.
- Do NOT cut, drill, grind, weld or perform similar operations on or near containers.
- DO NOT allow clothing wet with material to stay in contact with skin
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps. Safe handling
 - DO NOT enter confined spaces until atmosphere has been checked.
 - Avoid smoking, naked lights or ignition sources.
 - Avoid contact with incompatible materials.
 - When handling, DO NOT eat, drink or smoke.
 - Keep containers securely sealed when not in use.
 - Avoid physical damage to containers.
 - Always wash hands with soap and water after handling.
 - Work clothes should be laundered separately.
 - Use good occupational work practice.
 - Observe manufacturer's storage and handling recommendations contained within this SDS.
 - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.

Store in original containers.

- Keep containers securely sealed.
- No smoking, naked lights or ignition sources.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers
- Protect containers against physical damage and check regularly for leaks.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container

Other information

- ► Metal can or drum
- Packaging as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

Storage incompatibility

The alkyl side chain of aromatic rings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by oxidation at benzylic carbon as the intermediate formed is stabilised by resonance structure of the ring.

Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the alpha-position to the aromatic ring, is the primary oxidation product formed (provided a hydrogen atom is initially available at this position) - this product is often short-lived but may be stable

Termstar Termiticide and Insecticide

Issue Date: 17/05/2021 Print Date: 18/05/2021

dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a tertiary C-H bond is even more susceptible to attack by oxygen

- Monoalkylbenzenes may subsequently form monocarboxylic acids; alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids
- Oxidation in the presence of transition metal salts not only accelerates but also selectively decomposes the hydroperoxides.
- Hock-rearrangement by the influence of strong acids converts the hydroperoxides to hemiacetals. Peresters formed from the hydroperoxides undergo Criegee rearrangement easily.
- Alkali metals accelerate the oxidation while CO2 as co-oxidant enhances the selectivity.
- Microwave conditions give improved yields of the oxidation products.
- Photo-oxidation products may occur following reaction with hydroxyl radicals and NOx these may be components of photochemical smogs. Oxidation of Alkylaromatics: T.S.S Rao and Shubhra Awasthi: E-Journal of Chemistry Vol 4, No. 1, pp 1-13 January 2007
- Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents.
- Aromatics can react exothermically with bases and with diazo compounds.

Pyrethrins and permethrins:

- are unstable in the presence of light, heat, moisture and air
- are hydrolysed by oxygen and/ or sunlight
- may react with strong oxidisers to produce fire and explosions
- are incompatible with alkalis

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	N-methyl-2-pyrrolidone	1-Methyl-2-pyrrolidone	25 ppm / 103 mg/m3	309 mg/m3 / 75 ppm	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2		TEEL-3
N-methyl-2-pyrrolidone	30 ppm	32 ppm		190 ppm
Ingredient	Original IDLH		Revised IDI H	

Ingredient	Original IDLH	Revised IDLH
bifenthrin	Not Available	Not Available
N-methyl-2-pyrrolidone	Not Available	Not Available
solvent naphtha petroleum, heavy aromatic	Not Available	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit
bifenthrin	E	≤ 0.01 mg/m³
Notes:	Occupational exposure banding is a process of assigning chemicals into s adverse health outcomes associated with exposure. The output of this pro range of exposure concentrations that are expected to protect worker hea	ocess is an occupational exposure band (OEB), which corresponds to a

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use

Chemwatch: 5465-82 Page 6 of 14 Issue Date: 17/05/2021 Version No: 2.1.5.1

Termstar Termiticide and Insecticide

Print Date: 18/05/2021

4: Large hood or large air mass in motion

4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

Eye and face protection

- ▶ Safety glasses with unperforated side shields may be used where continuous eye protection is desirable, as in laboratories; spectacles are not sufficient where complete eye protection is needed such as when handling bulk-quantities, where there is a danger of splashing, or if the material may be under pressure.
- Chemical goggles.whenever there is a danger of the material coming in contact with the eyes; goggles must be properly fitted.
- Full face shield (20 cm, 8 in minimum) may be required for supplementary but never for primary protection of eyes; these afford face
- Alternatively a gas mask may replace splash goggles and face shields.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalentl

Skin protection

See Hand protection below

► Elbow length PVC gloves

NOTE:

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- ▶ Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.

- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use
- Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min
- Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended

Body protection

Hands/feet protection

See Other protection below

Other protection

- Overalls
- P.V.C apron.
- Barrier cream.
- Skin cleansing cream. Eye wash unit.

Recommended material(s) **GLOVE SELECTION INDEX**

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the computergenerated selection:

Respiratory protection

Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Termstar Termiticide and Insecticide

Issue Date: **17/05/2021**Print Date: **18/05/2021**

Termstar Termiticide and Insecticide

Material	СРІ
BUTYL	Α
PE/EVAL/PE	Α
NATURAL RUBBER	В
PVA	В

- * CPI Chemwatch Performance Index
- A: Best Selection
- B: Satisfactory; may degrade after 4 hours continuous immersion
- C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 5 x ES	AK-AUS / Class 1 P2	-	AK-PAPR-AUS / Class 1 P2
up to 25 x ES	Air-line*	AK-2 P2	AK-PAPR-2 P2
up to 50 x ES	-	AK-3 P2	-
50+ x ES	-	Air-line**	-

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Yellow brown liquid with a characteristic solvent odour; mixes with water.				
Physical state	Liquid	Relative density (Water = 1)	0.88		
Odour	Not Available	Partition coefficient n-octanol / water	Not Available		
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available		
pH (as supplied)	Not Available	Decomposition temperature	Not Available		
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available		
Initial boiling point and boiling range (°C)	Not Applicable	Molecular weight (g/mol)	Not Applicable		
Flash point (°C)	>63	Taste	Not Available		
Evaporation rate	Not Available	Explosive properties	Not Available		
Flammability	Combustible.	Oxidising properties	Not Available		
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available		
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available		
Vapour pressure (kPa)	Not Available	Gas group	Not Available		
Solubility in water	Miscible	pH as a solution (1%)	Not Available		
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available		

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Inhaled

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo.

There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response to such irritation can

Chemwatch: 5465-82 Page 8 of 14 Issue Date: 17/05/2021 Version No: 2.1.5.1 Print Date: 18/05/2021

Termstar Termiticide and Insecticide

cause further lung damage. Inhalation of pyrethrins may produce nausea, vomiting, sneezing, serious discharge from the nose, blocked nose and asthma. High concentrations may produce excessive excitement, inco-ordination, tremors, muscle paralysis and death (due to failure of breathing). Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733) Ingestion Ingestion of pyrethrins may produce nausea, vomiting, headache, muscle tremors, shock and perhaps death. Its fatal human dose is estimated at 100 grams per 70 kg man (1430 mg/kg). Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. There is some evidence to suggest that the material may cause moderate inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterised by redness, swelling and blistering. Skin Contact Open cuts, abraded or irritated skin should not be exposed to this material The material may accentuate any pre-existing dermatitis condition Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals. Prolonged eye Eve contact may cause inflammation characterised by a temporary redness of the conjunctiva (similar to windburn) There has been concern that this material can cause cancer or mutations, but there is not enough data to make an assessment. Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. This material can cause serious damage if one is exposed to it for long periods. It can be assumed that it contains a substance which can produce severe defects. Ample evidence exists, from results in experimentation, that developmental disorders are directly caused by human exposure to the material. Ample evidence from experiments exists that there is a suspicion this material directly reduces fertility. Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following. Chronic Chronic poisoning by natural pyrethrins may result in convulsion, paralysis with extreme muscle tone, rapid and uneven heart beat, liver and kidney damage, or death. Natural pyrethrins may cause hypersensitivity especially if past exposure has occurred. Constant or exposure over long periods to mixed hydrocarbons may produce stupor with dizziness, weakness and visual disturbance, weight loss and anaemia, and reduced liver and kidney function. Skin exposure may result in drying and cracking and redness of the skin. Harmful: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed. TOXICITY IRRITATION Termstar Termiticide and Insecticide Not Available Not Available TOXICITY IRRITATION Eye (rabbit): non-irritant * Dermal (rabbit) LD50: >2000 mg/kg^[2] bifenthrin Oral(Rat) LD50; 54.5 mg/kg^[2] Skin (rabbit): non-irritant * TOXICITY IRRITATION Dermal (rabbit) LD50: 2000-4000 mg/kg^[2] Eye (rabbit): 100 mg - moderate N-methyl-2-pyrrolidone Inhalation(Rat) LC50; 3.1-8.8 mg/l4h^[2] Oral(Rabbit) LD50; ~3500 mg/kg^[2] TOXICITY IRRITATION Dermal (rabbit) LD50: >2000 mg/kg^[2] Eye (rabbit): Irritating solvent naphtha petroleum, heavy aromatic Inhalation(Rat) LC50; >0.003 mg/L4h[1] Eye: no adverse effect observed (not irritating)^[1] Oral(Rat) LD50; 512 mg/kg[1] Skin: adverse effect observed (irritating)[1] Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances NOEL (dogs) 1.5 mg/day/1y * ADI 0.02 mg/kg * Non-teratogenic in rats (< 2 mg/kg/day) and rabbits (8 mg/kg/day)* No skin sensitisation (guinea pigs) ' The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely **BIFENTHRIN** distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. For bifenthrin: Bifenthrin is moderately toxic if swallowed. Large doses may cause inco-ordination, tremor, excessive saliva production, vomiting, diarrhoea, and irritability to sound and touch. It is much less toxic by skin contact, and it does not inflame or irritate human skin, although it can cause a temporary tingling sensation. Animal testing shows that it has very little irritating effect on the eyes. Long-term effects are unknown. It does not seem to cause reproductive or developmental toxicity except at levels harmful to the mother. It is uncertain whether bifenthrin causes mutations; it is possible that it causes cancer in humans. Pyrethroids affect the nerves, over-stimulating nerve cells, causing tremors and then paralysis. Bifenthrin is mostly excreted in the urine and faeces but a small portion does accumulate in body fat. Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent N-METHYL-2-PYRROLIDONE asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to

Chemwatch: **5465-82** Page **9** of **14**Version No: **2.1.5.1**

Termstar Termiticide and Insecticide

Issue Date: **17/05/2021**Print Date: **18/05/2021**

the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

For N-methyl-2-pyrrolidone (NMP):

Acute toxicity: Animal testing shows NMP is quickly absorbed after inhalation, swallowing and administration on skin, distributed throughout the body, and eliminated mostly by hydroxylation to polar compounds, which are excreted in the urine. In animal testing NMP has a low potential for skin irritation and a moderate potential for eye irritation. Repeated daily doses of high amounts on the skin have caused severe, painful bleeding and eschar formation. In general, animal testing suggests NMP has low acute toxicity. Exposure to toxic amounts caused functional disturbances and depression of the central nervous system. Local irritation of the airway occurred after inhalation, and irritation of the gastrointestinal tract occurred after swallowing in animals.

Repeat dose toxicity: There is no clear toxicity profile for NMP after multiple administration. In animal testing, shrinking of the testes and thymus gland were observed, together with an increase in red blood cells, after exposure to high amounts. There is no data for humans after repeated-dose exposure.

Cancer-causing potential: NMP did not show any clear evidence for cancer-causing ability in an animal test for inhalation.

Genetic toxicity: The potential for NMP to cause mutations is rare. Tests do reveal that NMP may cause chromosome aberrations with bacteria and yeast. No tests involving human cells are available.

Reproductive toxicity: In animal tests, exposure to NMP resulted in a decrease in foetal weight.

Developmental toxicity: Animal testing showed that NMP can result in decreased foetal weights and delayed bone development.

A substance (or part of a group of chemical substances) of very high concern (SVHC) - or product containing an SVHC:

It is proposed that use within the European Union be subject to authorisation under the REACH Regulation. Indeed, listing of a substance as an SVHC by the European Chemicals Agency (ECHA) is the first step in the procedure for authorisation or restriction of use of a chemical. The criteria are given in article 57 of the REACH Regulation. A substance may be proposed as an SVHC if it meets one or more of the following criteria:

- it is carcinogenic *;
- it is mutagenic *;
- ▶ it is toxic for reproduction *;
- it is persistent, bioaccumulative and toxic (PBT substances);
- it is very persistent and very bioaccumulative (vPvB substances);
- there is "scientific evidence of probable serious effects to human health or the environment which give rise to an equivalent level of concern"; such substances are identified on a case-by-case basis.

Collectively described as CMR substances

The "equivalent concern" criterion is significant because it is this classification which allows substances which are, for example, neurotoxic, endocrine-disrupting or otherwise present an unanticipated environmental health risk to be regulated under REACH] Simply because a substance meets one or more of the criteria does not necessarily mean that it will be proposed as an SVHC. Many such substances are already subject to restrictions on their use within the European Union, such as those in Annex XVII of the REACH Regulation SVHCs are substances for which the current restrictions on use (where these exist) might be insufficient. There are three priority groups for assessment:

- ▶ PBT substances and vPvB substances;
- substances which are widely dispersed during use;
- ▶ substances which are used in large quantities

Animal studies indicate that normal, branched and cyclic paraffins are absorbed from the gastrointestinal tract and that the absorption of n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent than iso- or cyclo-paraffins.

The major classes of hydrocarbons are well absorbed into the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with fats in the diet. Some hydrocarbons may appear unchanged as in the lipoprotein particles in the gut lymph, but most hydrocarbons partly separate from fats and undergo metabolism in the gut cell. The gut cell may play a major role in determining the proportion of hydrocarbon that becomes available to be deposited unchanged in peripheral tissues such as in the body fat stores or the liver.

SOLVENT NAPHTHA PETROLEUM, HEAVY AROMATIC

For petroleum: This product contains benzene, which can cause acute myeloid leukaemia, and n-hexane, which can be metabolized to compounds which are toxic to the nervous system. This product contains toluene, and animal studies suggest high concentrations of toluene lead to hearing loss. This product contains ethyl benzene and naphthalene, from which animal testing shows evidence of tumour formation. Cancer-causing potential: Animal testing shows inhaling petroleum causes tumours of the liver and kidney; these are however not considered to be relevant in humans.

Mutation-causing potential: Most studies involving gasoline have returned negative results regarding the potential to cause mutations, including all recent studies in living human subjects (such as in petrol service station attendants).

Reproductive toxicity: Animal studies show that high concentrations of toluene (>0.1%) can cause developmental effects such as lower birth weight and developmental toxicity to the nervous system of the foetus. Other studies show no adverse effects on the foetus.

Human effects: Prolonged or repeated contact may cause defatting of the skin which can lead to skin inflammation and may make the skin more susceptible to irritation and penetration by other materials.

Animal testing shows that exposure to gasoline over a lifetime can cause kidney cancer, but the relevance in humans is questionable.

Acute Toxicity	~	Carcinogenicity	~
Skin Irritation/Corrosion	×	Reproductivity	✓
Serious Eye Damage/Irritation	×	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	✓
Mutagenicity	×	Aspiration Hazard	~

Legend:

X − Data either not available or does not fill the criteria for classification

🥓 – Data available to make classification

SECTION 12 Ecological information

Toxicity

Termstar Termiticide and Insecticide	Endpoint	Test Duration (hr)	Species	Value Source
	Not Available	Not Available	Not Available	Not Not Available Availab
bifenthrin	Endpoint	Test Duration (hr)	Species	Value Source
	NOEC(ECx)	336h	Fish	<0.001mg/L 4
	LC50	96h	Fish	<0.001mg/L 4

Page 10 of 14 Issue Date: 17/05/2021 Version No: 2.1.5.1 Print Date: 18/05/2021

Termstar Termiticide and Insecticide

	EC50	48h	Crustacea	<0.001mg	/L 4
	Endpoint	Test Duration (hr)	Species	Value	Source
	NOEC(ECx)	504h	Crustacea	12.5mg/l	2
N-methyl-2-pyrrolidone	EC50	72h	Algae or other aquatic plants	>500mg/l	1
	LC50	96h	Fish	2.936-3.873mg	/L 4
	EC50	48h	Crustacea	ca.4897mg/l	1
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50(ECx)	48h	Crustacea	0.95m	g/l 1
solvent naphtha petroleum,	EC50	96h	Algae or other aquatic plants	1mg/l	2
heavy aromatic	EC50	72h	Algae or other aquatic plants	<1mg/	1
	EC50	48h	Crustacea	0.95m	g/l 1
	LC50	96h	Fish	0.58m	g/l 2
Legend:	V3.12 (QSAR) -	Aquatic Toxicity Data (Estimated) 4.	CHA Registered Substances - Ecotoxicological I US EPA, Ecotox database - Aquatic Toxicity Da TI (Japan) - Bioconcentration Data 8. Vendor Da	ata 5. ECETOC Aquatic Haza	

Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

Toxic to flora.

Toxic to soil organisms.

For Aromatic Substances Series:

Environmental Fate: Large, molecularly complex polycyclic aromatic hydrocarbons, or PAHs, are persistent in the environment longer than smaller PAHs.

Atmospheric Fate: PAHs are 'semi-volatile substances' which can move between the atmosphere and the Earth's surface in repeated, temperature-driven cycles of deposition and volatilization. Terrestrial Fate: BTEX compounds have the potential to move through soil and contaminate ground water, and their vapors are highly flammable and explosive. Ecotoxicity - Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. The order of most toxic to least in a study using grass shrimp and brown shrimp was dimethylnaphthalenes > methylnaphthalenes > nethylnaphthalenes > nethyln sunfish. Biological resources in strong sunlight are at more risk than those that are not. PAHs in general are more frequently associated with chronic risks. for N-methyl-2-pyrrolidinone (NMP):

log Kow : -0.44-0.1

Environmental Fate

NMP may enter the environment as emissions to the atmosphere, as the substance is volatile and widely used as a solvent, or it may be released to water as a component of municipal and industrial wastewaters. The substance is mobile in soil, and leaching from landfills is thus a possible route of contamination of groundwater.

In air, NMP is expected to be removed by wet deposition or by photochemical reactions with hydroxyl radicals. As the substance is completely miscible in water, it is not expected to adsorb to soil, sediments, or suspended organic matter or to bioconcentrate. NMP is not degraded by chemical hydrolysis. NMP is rapidly biodegraded, and it is thus not expected to persist in the environment. It is water soluble and is expected to have low volatility. Hydrolysis is not expected to be an important factor in the environmental fate process for this

Persistence and Degradability

Biodegradation: This material is expected to be readily biodegradable.

Bioaccumulation: This material is not expected to bioaccumulate.

Ecotoxicity:

This material is expected to be non-hazardous to aquatic species.

Fish LC50 (96 h): bluegill. 832 mg/l, fathead minnow 1072 mg/l; rainbow trout 3048 mg/l

Daphnia magna EC50 (24 h): > 1000 mg/l

Algae EC50 (72 h): Scenedesmus subspicatus > 500 mg/l

Environmental Fate: Bifenthrin binds strongly to soil and is not soluble to water, thus decreasing its potential to leach in the environment.

Breakdown of Chemical in Soil and Groundwater: Bifenthrin is immobile in soils containing high amount of organic matter, clay, and silt. It is also slightly mobile to sandy soils with low organic matter content. Bifenthrin is relative insoluble in water, thus groundwater contamination is less likely to occur.

Breakdown of Chemical in Vegetation: Bifenthrin is not taken up by plants foliage and it is not translocated in the plant.

Ecotoxicity: Toxicity tests show that Bifenthrin is moderately toxic to many bird species.

Bird LC50 (8-day, dietary): mallard duck 1280 ppm, bobwhite quail 4450 ppm

Bird oral LD50: bobwhite quail 1800 mg/kg, mallard duck 2150 mg/kg

Further, it is found to be extremely to fish, crustaceans and aquatic animals. Bifenthrin has high affinity to soil and low solubility to water, thus decreasing its potential to enter the aquatic environment.

Fish LC50 (96 h): rainbow trout 0.00015 mg/l, bluegill 0.00035 mg/l

Daphnia LC50 (96 h): 0.0016 mg/l

Bifenthrin is found to be toxic to bees

For synthetic pyrethroids:

Environmental Fate: Synthetic pyrethroids are examples of optimised insecticidal activity, selectivity and tailored environmental persistence. Through modifications of both acid and alcohol portions of the ester, compounds of desired residual activity have been synthesised whilst maintaining a biodegradable ester linkage. While these compounds are generally very toxic to crustaceans and fish in laboratory bio assays, under field conditions, the residues are tightly bound in sediment, and ingested residues are readily metabolised, resulting in their toxicity in natural systems generally being less than laboratory test data might indicate. They are generally non-persistent in the environment, as pyrethroid concentrations decrease rapidly due to sorption to sediment, suspended particles and plants. Microbial and photodegradation also occur. Pyrethrins are generally unstable in the presence of light, are hydrolysed rapidly under alkaline conditions and oxidise rapidly in air. Vapour phase pyrethrins may combine chemically with ozone to produce hydroxy radicals. Pyrethroids that are more stable to sunlight include permethrin, deltamethrin, cyhalothrin, cyfluthrin, and cypermethrin and are thus more frequently applied outdoors to crops in comparison to the rapidly degraded pyrethroids like resmethrin and allethrin. Because agricultural dose rates are low and biological degradation is generally rapid, residues are unlikely to attain significant levels. Permethrin disappears from ponds and streams within 6-24 hours, pond sediments within 7 days and foliage and forest soil within 58 days. Pyrethrins and pyrethroids are degraded by light both in the atmosphere and sunlit surface waters. The rate of photolysis in water is increased when fulvic and humic acids are present. Pyrethroids and pyrethrins also undergo hydrolysis in the environment at varying rates depending upon pH and temperature. Generally, hydrolysis is only an important environmental fate process under alkaline conditions and at temperatures of 20 deg. C or greater.

Pyrethrins and pyrethroids are expected to exist in both vapour and particulate phases in the ambient atmosphere. Vapor phase pyrethrins and pyrethroids are rapidly degraded in the atmosphere by direct photolysis and reaction with oxidants found in air such as photochemically-produced hydroxyl radicals, ozone, and nitrate radicals. Particulate phase compounds are slower to degrade and can travel long distances before being removed from the air by wet and dry deposition. Pyrethrins and pyrethroids adhere strongly to soil surfaces and are not very mobile so leaching potential is low. Photolysis is only an important environmental fate at the surface of the soil as light cannot penetrate to deeper layers of the soil. The potential for significant toxicity is not reached in field conditions. Under aerobic conditions in soil, permethrin degrades in a relatively short time (half-life 28 days). Volatilisation from water and soil is expected to occur slowly for many of the pyrethroids. When released to water, partitioning to suspended solids and sediment occurs rapidly. These compounds adsorb strongly to suspended solids and sediment in the water column, and this process significantly reduces the potential for volatilisation. Volatilisation losses from foliage may be

Chemwatch: 5465-82 Page 11 of 14

Termstar Termiticide and Insecticide

Issue Date: 17/05/2021 Print Date: 18/05/2021

considerably greater than volatilisation from soils because pyrethrins and pyrethroids do not adsorb as strongly to the leafy component of vegetation as to soils. Pyrethrins and pyrethroids are often used indoors in sprays or aerosol bombs, and the volatilisation rates from glass or floor surfaces may be significantly faster than from soils since these compounds are not likely to adsorb as strongly to these surfaces.

Little data exist regarding the uptake and transport of pyrethrins and pyrethroids by plant material. Since many of these compounds are rapidly degraded in the environment, this transport mechanism may not be an important environmental fate process other than the initial settling of these compounds on the canopy following deposition. The aerial surface of a plant, including foliage, is covered by a cuticle, which serves as a barrier to water loss and to prevent penetration of applied chemicals or environmental pollutants. Once deposited on the surface, a chemical may be degraded, bind to the cuticle, or diffuse into the plant through the stomata. Since pyrethrins and pyrethroids adsorb strongly to soils, their uptake from roots and transport within plants is expected to be limited.

Humans are exposed to pyrethrins and pyrethroids primarily from food sources, especially fruits and vegetables. The tendency of young children to ingest soil, either intentionally or unintentionally can result in ingestion of pyrethrins and pyrethroids present in soil and dust. Since these compounds are adsorbed strongly to soils, they may not be in a highly bioavailable form. Young children often play on the ground or on carpets and this will increase the likelihood of skin exposure and inhalation of contaminated particles from soil, household dust and treated surfaces. Drinking Water Standards: pesticide 0.1 ug/l (UK max.)

Ecotoxicity: Synthetic pyrethroids are extremely effective against insects, but are relatively safe to mammals and birds. Pyrethroids are extreme toxic to aquatic organisms, where often <1 ug/L will produce toxic effects. The half-lives for elimination of several pyrethroids by trout are all greater than 48 hours, while elimination half-lives in birds and mammals range from 6 to 12 hours. Pyrethroids are highly toxic to fish; with 96-hour LC50 values generally below 10 ug/l. Corresponding LD50 values in mammals and birds are in the range of several hundred to several thousand mg/kg. Fish sensitivity to the pyrethroids may be explained by their relatively slow metabolism and elimination of these compounds. The half-lives for elimination of several pyrethroids by trout are all greater than 48 hours, while elimination half-lives for birds and mammals range from 6 to 12 hours. Generally, the lethality of pyrethroids to fish increases with increasing octanol/water partition coefficients. The bioaccumulation factor of cypermethrin in fish is approximately 1000 when measured experimentally.

Substances containing unsaturated carbons are ubiquitous in indoor environments. They result from many sources (see below). Most are reactive with environmental ozone and many produce stable products which are thought to adversely affect human health. The potential for surfaces in an enclosed space to facilitate reactions should be considered.

personal care products)

Version No: 2.1.5.1

Source of unsaturated substances Unsaturated substances (Reactive Emissions) Isoprene, nitric oxide, squalene, unsaturated sterols oxidation products

Major Stable Products produced following reaction with ozone Methacrolein, methyl vinyl ketone, nitrogen dioxide, acetone, 6MHQ, geranyl acetone, Occupants (exhaled breath, ski oils, oleic acid and other unsaturated fatty acids, unsaturated 4OPA, formaldehyde, nonanol, decanal, 9-oxo-nonanoic acid, azelaic acid, nonanoic acid.

Soft woods, wood flooring, including Isoprene, limonene, alpha-pinene, other terpenes and cypress, cedar and silver fir boards, sesquiterpenes houseplants

Formaldehyde, 4-AMC, pinoaldehyde, pinic acid, pinonic acid, formic acid, methacrolein, methyl vinyl ketone, SOAs including ultrafine particles

Carpets and carpet backing Linoleum and paints/polishes 4-Phenylcyclohexene, 4-vinylcyclohexene, styrene, 2-ethylhexyl acrylate, unsaturated fatty acids and esters

Formaldehyde, acetaldehyde, benzaldehyde, hexanal, nonanal, 2-nonenal

containing linseed oil Latex paint

Linoleic acid, linolenic acid

Propanal, hexanal, nonanal, 2-heptenal, 2-nonenal, 2-decenal, 1-pentene-3-one, propionic acid, n-butyric acid

Certain cleaning products, polishes waxes, air fresheners

Residual monomers Limonene, alpha-pinene, terpinolene, alpha-terpineol,

Formaldehyde Formaldehyde, acetaldehyde, glycoaldehyde, formic acid, acetic acid, hydrogen and

Natural rubber adhesive

linalool, linalyl acetate and other terpenoids, longifolene and other sesquiterpenes

organic peroxides, acetone, benzaldehyde, 4-hydroxy-4-methyl-5-hexen-1-al, 5-ethenyldihydro-5-methyl-2(3H)-furanone, 4-AMC, SOAs including ultrafine particles Formaldehyde, methacrolein, methyl vinyl ketone

Photocopier toner, printed paper, styrene polymers

Styrene

Isoprene, terpenes

Styrene, acrolein, nicotine

Formaldehyde, benzaldehyde

Environmental tobacco smoke

Formaldehyde, benzaldehyde, hexanal, glyoxal, N-methylformamide, nicotinaldehyde, cotinine

Soiled clothing, fabrics, bedding

Squalene, unsaturated sterols, oleic acid and other saturated fatty acids

Acetone, geranyl acetone, 6MHO, 40PA, formaldehyde, nonanal, decanal, 9-oxo-

Soiled particle filters

nonanoic acid, azelaic acid, nonanoic acid Formaldehyde, nonanal, and other aldehydes; azelaic acid; nonanoic acid; 9-oxo-

Unsaturated fatty acids from plant waxes, leaf litter, and nonanoic acid and other oxo-acids; compounds with mixed functional groups (=O, -OH, other vegetative debris; soot; diesel particles and -COOH)

Ventilation ducts and duct liners

Unsaturated fatty acids and esters, unsaturated oils, neoprene

C5 to C10 aldehydes

"Urban grime

Polycyclic aromatic hydrocarbons Perfumes, colognes, essential oils Limonene, alpha-pinene, linalool, linalyl acetate,

Oxidized polycyclic aromatic hydrocarbons Formaldehyde, 4-AMC, acetone, 4-hydroxy-4-methyl-5-hexen-1-al, 5-ethenyl-dihydro-5-methyl-2(3H) furanone, SOAs including ultrafine particles

(e.g. lavender, eucalyptus, tea tree) terpinene-4-ol, gamma-terpinene Overall home emissions Limonene, alpha-pinene, styrene

Formaldehyde, 4-AMC, pinonaldehyde, acetone, pinic acid, pinonic acid, formic acid,

Abbreviations: 4-AMC, 4-acetyl-1-methylcyclohexene; 6MHQ, 6-methyl-5-heptene-2-one, 4OPA, 4-oxopentanal, SOA, Secondary Organic Aerosols

benzaldehyde, SOAs including ultrafine particles

Reference: Charles J Weschler; Environmental Helath Perspectives, Vol 114, October 2006

DO NOT discharge into sewer or waterways

Persistence and degradability

r ersistence and degradability			
Ingredient	Persistence: Water/Soil	Persistence: Air	
bifenthrin	HIGH	HIGH	
N-methyl-2-pyrrolidone	LOW	LOW	

Bioaccumulative potential

Ingredient	Bioaccumulation
bifenthrin	LOW (LogKOW = 8.1524)
N-methyl-2-pyrrolidone	LOW (BCF = 0.16)
solvent naphtha petroleum, heavy aromatic	LOW (BCF = 159)

Mobility in soil

Ingredient	Mobility
bifenthrin	LOW (KOC = 3228000)
N-methyl-2-pyrrolidone	LOW (KOC = 20.94)

SECTION 13 Disposal considerations

Waste treatment methods

Chemwatch: 5465-82 Version No: 2.1.5.1

Termstar Termiticide and Insecticide

Issue Date: 17/05/2021 Print Date: 18/05/2021

▶ Return to supplier for reuse/ recycling if possible.

Otherwise:

- Fill frontainer can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ▶ Reduction
- ► Reuse
- ► Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ▶ Where in doubt contact the responsible authority.
- Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Authority for disposal.
- ▶ Bury or incinerate residue at an approved site.
- Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 Transport information

Labels Required

Marine Pollutant

HAZCHEM

•3Z

Land transport (ADG)

UN number	3082			
UN proper shipping name	ENVIRONMENTALLY	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains bifenthrin)		
Transport hazard class(es)	Class 9 Subrisk Not App	olicable		
Packing group				
Environmental hazard	Environmentally haza	rdous		
Special precautions for user	Special provisions Limited quantity	274 331 335 375 AU01 5 L		

Environmentally Hazardous Substances meeting the descriptions of UN 3077 or UN 3082

are not subject to this Code when transported by road or rail in;

(a) packagings;

(b) IBCs: or

(c) any other receptacle not exceeding 500 kg(L).

- Australian Special Provisions (SP AU01) - ADG Code 7th Ed.

Air transport (ICAO-IATA / DGR)

an autoport (toxic minity bott)				
UN number	3082			
UN proper shipping name	Environmentally hazardo	Environmentally hazardous substance, liquid, n.o.s. * (contains bifenthrin)		
Transport hazard class(es)	ICAO/IATA Class	9 Not Applicable		
	ERG Code	9L		
Packing group	III			
Environmental hazard	Environmentally hazardous			
	Special provisions Cargo Only Packing Ir	estructions	A97 A158 A197 A215	
Special precautions for user	Cargo Only Maximum	Qty / Pack	450 L	
	Passenger and Cargo	Packing Instructions	964	
	Passenger and Cargo Maximum Qty / Pack		450 L	

Chemwatch: **5465-82**Version No: **2.1.5.1**

Termstar Termiticide and Insecticide

Issue Date: **17/05/2021**Print Date: **18/05/2021**

Passenger and Cargo Limited Quantity Packing Instructions Y964

Passenger and Cargo Limited Maximum Qty / Pack 30 kg G

Sea transport (IMDG-Code / GGVSee)

UN number	3082		
UN proper shipping name	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains bifenthrin)		
Transport hazard class(es)	IMDG Class 9 IMDG Subrisk Not Applicable		
Packing group	III		
Environmental hazard	Marine Pollutant		
Special precautions for user	EMS Number F-A , S-F Special provisions 274 335 969 Limited Quantities 5 L		

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
bifenthrin	Not Available
N-methyl-2-pyrrolidone	Not Available
solvent naphtha petroleum, heavy aromatic	Not Available

Transport in bulk in accordance with the ICG Code

Product name	Ship Type
bifenthrin	Not Available
N-methyl-2-pyrrolidone	Not Available
solvent naphtha petroleum, heavy aromatic	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

bifenthrin is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 2

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 $\,$

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 7

N-methyl-2-pyrrolidone is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule $\bf 6$

Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List

solvent naphtha petroleum, heavy aromatic is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals
Australian Inventory of Industrial Chemicals (AIIC)

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

National Inventory Status

National Inventory	Status		
Australia - AIIC / Australia Non-Industrial Use	No (bifenthrin)		
Canada - DSL	No (bifenthrin)		
Canada - NDSL	No (bifenthrin; N-methyl-2-pyrrolidone; solvent naphtha petroleum, heavy aromatic)		
China - IECSC	Yes		
Europe - EINEC / ELINCS / NLP	No (bifenthrin)		
Japan - ENCS	No (solvent naphtha petroleum, heavy aromatic)		
Korea - KECI	Yes		
New Zealand - NZIoC	Yes		
Philippines - PICCS	No (bifenthrin)		
USA - TSCA	No (bifenthrin)		

Chemwatch: 5465-82 Page **14** of **14** Issue Date: 17/05/2021 Version No: 2.1.5.1 Print Date: 18/05/2021

Termstar Termiticide and Insecticide

National Inventory	Status
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - FBEPH	No (bifenthrin)
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 Other information

Revision Date	17/05/2021
Initial Date	17/05/2021

SDS Version Summary

Version	Date of Update	Sections Updated
0.0.2.1	27/04/2021	Regulation Change
0.0.3.1	04/05/2021	Regulation Change
0.0.4.1	07/05/2021	Regulation Change
0.0.5.1	11/05/2021	Regulation Change

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value

BCF: BioConcentration Factors BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory

INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.